机构地区: 华南理工大学工商管理学院
出 处: 《运筹学学报》 2006年第2期28-36,共9页
摘 要: 本文考虑一个具有负顾客到达的M/G/1可修捧队系统.所有顾客(包括正顾客和负顾客)的到达都是泊松过程,服务器是可修的.Harrison和Pitel研究过具有负顾客到达的M/G/1捧队系统.这里我们推广到有可修服务器情形,系统的稳态解最后可以通过Fredholm积分方程解出. The paper concerns an M/G/1 G-queues with removable server. Arrivals of customers (both positive customers and negative customers) are a Poisson process and the server may break down with Poisson rate and need repair time. Harrison and Pitel (1996) investigated a M/G/1 queue with negative arrivals. In this paper, we extend the analysis to a G-queue with removable server. We show the equilibrium results of this system can still be reduced to Fredholm integral equations that can be solved numerically.