机构地区: 中山大学数学与计算科学学院
出 处: 《数学进展》 2005年第5期545-552,共8页
摘 要: 设E是Rn中由相似压缩S1,S2,…,Sm所确定的满足开集条件的自相似集,其Hausdorff维数为s,其s-维Hausdorff测度记为Hs(E).利用部分估计原理得到了本文的主要结果:若E满足强分离开集条件,则在E中存在一个压缩拷贝串序列{Ui}和紧集U(|U|>0),使得Hs(U)等于|U|s,并且{Ui}按Hausdorff度量收敛到U,进而证明了由U可以构造一个数列,使得该数列正好收敛到Hs(E);另外,引入了自相似集的相似压缩不动点,得到了等式Hs(E∩U)=|U|s 成立的一个必要条件. For any E ∩← R^n, denote by dimH(E) and H^s(E) the Hausdorff dimension and s-dimensional Hausdorff measure of E, where s is equal to dimH(E). Suppose E is the attractor of the IFS {S1,…,Sm} consisting of similarities. If E satisfies the strong separation open set condition (SSC), then there exists a series of contracting-copy-group {Ui} and a compact set U(|U| 〉 0) such that H^s(U) = |U|^s and moreover, {Ui} converges to U with respect to Hausdorff metric. Besides, we introduce the concept of fixed point for the similar contraction mappings and obtain a necessary condition for the equality H^s(E ∩ U) =|U|^s.