帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

不同管径碳纳米管电化学储氢性能的比较
The Comparison of Electrochemical Hydrogen Storage Abilities of CNTs with Different Tube Diameters

作  者: ; ; ; ; ;

机构地区: 广东工业大学材料与能源学院

出  处: 《材料导报》 2005年第10期117-120,138,共5页

摘  要: 比较了5种不同管径碳纳米管的电化学储氢能力。采用三电极体系,Ni(OH)_2/NiOOH 为对电极,CNTs-Ni(质量比为1:9)为工作电极,Hg/HgO 为参比电极,30%的 KOH 作为电解液。实验结果显示:在同等制作条件和200mA/g 的充放电电流密度,0.1V 的放电终了电压下,10~30nm 的碳管储氢能力最好,克容量最大为480.6mAh/g,相应的平台电压高达0.92V;20~40nm 的最高克容量为430.5mAh/g,仅低于10~30nm 的电化学储氢量。10~20nm、40~60nm 和60~100nm 碳管的电化学储氢量分别是:401.1mAh/g、384.7mAh/g 和298.3mAh/g。由此可见碳纳米管的管径大小也是影响其电化学储氢性能的一大因素。纯镍电极在同等条件下的最高放电量只有17.8mAh/g,对整个电极放电量的影响可以忽略不计。 In this paper, the electrochemical hydrogen storage abilities of pure carbon nanotubes (CNTs)with five different diameters are compared. Three-electrode system is introduced to test the difference. Ni(OH)2/NiOOH is used as the counter electrode, CNTs-Ni (the mass ratio is 1:9)as the working electrode and Hg/HgO as the reference electrode. Constant current charge/discharge cycling method in 6 mol/L KOH electrolyte is utilized to measure the electrochemical hydrogen storage by electrochemical testing instrument. Results show that 10~30nm CNTs have the best hydrogen storage capacity with a highest capacity of 480.6mAh/g and a corresponding discharging plateau voltage of 0.92V. Under the condition of same preparation method and 200mA/g charge/discharge current density and 0.1V discharge voltage limit, 20~40nm CNTs have a highest capacity of 430. 5mAh/g, which is only lower than that of 10~30nm CNTs. The abilities of 10~ 20nm, 40~60nm and 60~ 100nm CNTs are 401. 1mAh/g, 384. 7mAh/g and 298. 3mAh/g respectively. This shows that the tube diameter of CNTs is a factor that influences the electrochemical hydrogen storage performance. The pure Ni electrode has a highest discharge capacity of 17.8mAh/g under the same charge/discharge condition, which only has a neglectable effect on the electrochemical hydrogen storage of the whole CNTs-Ni electrode.

关 键 词: 碳纳米管 电化学储氢 克容量 电极 储氢性能 电化学 管径 三电极体系 储氢能力

领  域: [一般工业技术] [电气工程]

相关作者

相关机构对象

相关领域作者

作者 许治
作者 刘洋
作者 万良勇
作者 宋舒
作者 王珺