机构地区: 暨南大学信息科学技术学院计算机科学系
出 处: 《计算机工程》 2005年第8期145-147,共3页
摘 要: 蚁群优化是人工智能领域中群体智能分支之一,已经成功地应用于旅行推销员、作业调度由选择等优化问题上,但用它解决数据挖掘问题还是一个新的研究课题。Parepinelli等人针对单一数据库提出了基于ACO的分类算法[1]。该文提出了基于分布式数据库体系结构的ACO分类算法,采用了与Parepinelli算法不同的启发函数计算方法及信息素改变方法,模拟实验表示该方法是有效的。 Ant colony optimization (ACO) is a branch of a newly developed form of artificial intelligence called swarm intelligence. It has been applied successfully to travel sales problem, job schedule, router choice and other combinatorial optimization problems. But it is still a new research topic in data mining. Parepinelli etc. proposed ACO classification algorithm to single database. The paper proposes ACO classification algorithm based on distributed database structure, and uses new heuristic computation and pheromone update methods which are different from Parepinelli's. The experiment shows that the method is effective.
领 域: [自动化与计算机技术] [自动化与计算机技术]