机构地区: 长沙理工大学电气与信息工程学院
出 处: 《传感技术学报》 2005年第1期123-128,共6页
摘 要: 针对冷凝器的周期性结垢过程以及工况参数的动态变化 ,提出了一种冷凝器污垢预测的新方法。该方法将污垢分解为软垢和硬垢两部分 ,并采用两个T- S模糊模型分别描述软垢和硬垢的变化趋势 ,进而通过二者的结合获得较为精确的污垢预测。根据此方法 ,进行了现场试验 ,试验结果表明 :与渐近污垢模型及改进的渐近污垢模型相比 ,该方法能够有效地处理冷凝器的周期性结垢现象 ,并在冷凝器工况参数变化时仍然取得较满意的预测精度。该方法的成功应用为冷凝器最优清洗机制的建立奠定了基础。 The prediction of fouling in condenser is heavily influenced by the periodic fouling processes and dynamics change of the parameters. To deal with it, a novel prediction approach based on T-S model is proposed. In the approach, the overall fouling is separated into two parts: hard fouling and soft fouling. The variation trends of these fouling are approximated by two T-S models, respectively, and the more accurate prediction can be made by the combination of output of T-S models. Based on it, a test on an actual condenser is conducted. The results show the approach to be more effective than asymptotic fouling model and improved asymptotic fouling model.