机构地区: 北京航空航天大学理学院
出 处: 《计算物理》 2004年第6期523-530,共8页
摘 要: 以Burgers方程为例,提出了一种求解偏微分方程的自适应多层插值小波配置法,通过引入一种具有插值特性的拟Shannon小波并利用插值小波理论构造了多层自适应插值小波算子,从而在空间实现了偏微分方程的自适应离散.另外,精细时程积分方法和外推法的引入不但有助于提高求解速度和数值结果的精度,而且使时间积分步长的选取具有了自适应性. Taking the Burgers equation as example, an adaptive multilevel interpolation quasi-wavelet collocation method for the solution of partial differential equations is developed. In this method, an adaptive multilevel quasi-wavelet collocation interpolation operator is constructed according to the interpolation wavelet theory, and then the equations can be discreted adaptively in physical space. On the other hand, the extrapolation and precise integration method is helpful for decreasing computation time and improving calculating precision, and it make the selection of time step for integration self-adaptive.