机构地区: 上海理工大学理学院
出 处: 《数学物理学报(A辑)》 2005年第1期119-129,共11页
摘 要: 该文推导了具任意次非线性项的Liénard方程a″(ξ)+la(ξ)+maq(ξ)+na2q-1(ξ)=0和a″(ξ)+ra′(ξ)+la(ξ)+maq(ξ)+na2q-1(ξ)=0解的若干性质,通过适当变换,并结合假设待定法求出了它们的钟状和扭状显式精确解.据此,求出了一批具任意次非线性项的发展方程的钟状和扭状显式精确孤波解,其中包括广义BBM型方程、二维广义Klein-Gordon方程、广义Pochhammer-Chree方程和非线性波方程等. In this paper, the authors first establish some properties of solutions for Liénard equation with nonlinear terms of any order. Then, explicit exact solutions for the Liénard equation are obtained by proper transformation and undetermined assumption method. By means of these solutions, the authors obtain explicit exact bell and kink profile solitary wave solutions for many nonlinear evolution equation with nonlinear terms of any degree. These nonlinear equations include generalized BBM type, generalized Klein-Gordon, generalized Pochhammer-Chree and generalized wave equation.