帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

一种隐式时间算法在非结构混合网格粘性流动计算中的应用
An Implicit Algorithm Suitable for Solving Viscous Flow Problems on Unstructured Mixed Element Grids

作  者: ; ; ;

机构地区: 西北工业大学动力与能源学院翼型叶栅空气动力学国防科技重点实验室

出  处: 《西北工业大学学报》 2004年第6期790-794,共5页

摘  要: 进行了一种隐式时间算法在非结构混合网格求解粘性流场中的应用研究 ,采用计算量较小的中心有限体积格式对 N- S方程进行空间离散 ,运用通量线性化假设和最大特征值方法进行雅可比矩阵分裂来实现隐式高斯 -赛德尔时间迭代 ,并利用作者提出的自适应当地时间步长和隐式残值光顺等措施加速收敛。以 M6机翼和 DLR- F6带发动机短舱的翼身组合体 2种外形的跨音速流场为数值算例 ,计算结果表明 :改进的非结构混合网格粘性流场隐式求解算法具有精度好、效率高的特点 ,可用于激波——附面层干扰。 Batina′s implicit algorithm , and later that of Tomaro et al are quite good; with suitable changes, Tomaro's algorithm can be made applicable to more difficult problems. Our implicit algorithm is different from theirs in three respects: mixed element grid, viscous flow, and introduction of adaptive local time stepping and residual averaging. In this paper, an implicit algorithm for solving the Navier-Stokes equations on three-dimensional unstructured mixed element grids is presented. The spatial discretization is based on the cell-centered finite-volume method. The first-order linearizing of flux vector and maximal eigenvalue splitting of flux Jacobi matrix are employed to construct an implicit Gauss-Seidel relaxation procedure. Adaptive local time stepping and residual averaging are used to accelerate convergence. In this paper, in order to check up the feasibility and efficiency of our implicit algorithm, we give two numerical examples of viscous flow problems around the ONERA M6 wing and DLR-F6 wing-body configuration respectively. For all calculations, Spalart-Allmaras one equation turbulence model is implemented. For each numerical example, comparison of convergence histories between our implicit algorithm and standard explicit 4-stage Runge-Kutta method are presented, which indicates that the convergence speed of implicit algorithm is several times faster than the explicit one's. For M6 wing configuration, the computed pressure distributions agree well with the experimental data, which show that the numerical method of this paper can well simulate the shock induced separation on the outboard portion of the wing. And for DLR-F6 wing-body configuration, numerical results show that our method has excellent accuracy in predicting the aerodynamics influence of pylon and nacelle. Our algorithm is particularly useful in handling complex flow problems such as shock-boundary layer interaction and interference flow between different aircraft components.

关 键 词: 混合网格 隐式算法 方程 非结构网格

领  域: [航空宇航科学与技术] [航空宇航科学技术]

相关作者

作者 朱书尚
作者 郝玉华
作者 刘郁菲

相关机构对象

机构 中山大学管理学院
机构 华南理工大学
机构 中南财经政法大学统计与数学学院
机构 华南理工大学理学院
机构 广东财经大学

相关领域作者

作者 张鼎华