机构地区: 广州中医药大学经济与管理学院
出 处: 《科学时代》 2013年第23期-,共3页
摘 要: 聚类分析是一种无监督的学习方法,是数据挖掘领域进行数据处理的重要分析工具和方法。K-均值聚类算法是一种典型的基于划分的方法,该方法的主要优点是,算法思想简单易行、快速而高效;但是该方法也存在其固有的缺陷:要求预先给定聚类个数;容易陷入局部极小值而得不到全局最优解等。针对以上问题,利用分类领域中的特征选择及特征加权方法,提出了一种改进的特征加权 K-均值聚类算法。实验结果证明,所提出的算法能产生质量较高的聚类结果。
领 域: [自动化与计算机技术] [理学] [理学]